
Primal-Dual Algorithm for Steiner Forest1

• The Steiner Forest Problem. In this problem, we are given an undirected graph G = (V,E) with
edge weights c(e) ≥ 0. Furthermore, we are given a collection of k pairs of vertices {si, ti}i=1,...,k.
The objective is to find a subgraph H = (U,F) ⊆ G such that si is connected to ti in H , for all
1 ≤ i ≤ k, and cost(F) =

∑
e∈F c(e) is minimized.

The Steiner forest problem generalizes several problems:

– The shortest path problem (k = 1)
– The minimum spanning tree problem (k =

(|V |
2

)
, all points connected)

– The Steiner tree problem (k =
(|R|

2

)
corresponding to some required R ⊆ V)

As with the Steiner Tree problem, the output is acyclic, since it is always possible to break a cycle
(which removes an edge) and span the same vertices. Furthermore, the output takes the form of
a collection of disjoint trees, hence the name “Steiner forest.” In this lecture, we will see a clever
2-approximation using a primal-dual algorithm.

• The Primal LP. The primal LP relaxation is standard: we assign a variable xe ∈ [0, 1] to each edge
to determine if (or rather, “how much”) it is chosen, with the objective of minimizing

∑
e∈F c(e)xe.

But how can we express the constraint that all required terminal pairs are connected? One way is to
consider “blocking” subsets S ⊆ V which satisfy |{si, ti} ∩ S| = 1 for some 1 ≤ i ≤ k, that is, the
subset S “separates” si and ti. Observe that si is connected to ti in H if and only if |∂HS| ≥ 1 for
any S sepearating si and ti. Let B be the set of all such blocking subsets. We can therefore add the
constraint

∀S ∈ B :
∑

e∈∂HS

xe ≥ 1

Since the number of blocking sets is exponential (there are 2|V |−2 sets which exclude a given vertex
and contain another), it seems unwieldy to assign a constraint for each one. We could alternatively
formulate our constraints in terms of flow by creating auxiliary variables f (i)

e representing flow (where
xe is the capacity of each edge) and stating that each required terminal connection must have at least
1 flow. Although this uses only k|F | constraints, we will proceed with the LP as expressed above,
and show how to use it to design our approximation algorithm. This lecture demonstrates that having
many constraints is not necessarily bad.

• The Dual LP. We can mechanically extract the dual LP as follows:

minimize
∑
e∈E

c(e)xe maximize
∑
S∈B

yS

subject to
∑

e∈∂HS

xe ≥ 1, ∀S ∈ B subject to
∑

S∈B:e∈∂HS

yS ≤ c(e), ∀e ∈ E

xe ≥ 0, ∀e ∈ E yS ≥ 0, ∀S ∈ B
1Lecture notes by Finn Hulse, lightly edited by Deeparnab Chakrabarty. Last modified : 25th Feb, 2022

These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

Note that in the primal we don’t need to upper bound xe because any xe value above 1 could be
reduced at the benefit of the program without violating a constraint.

• The Primal-Dual Schema for Steiner Forest. Although the primal LP has an absurd number of con-
straints, the corresponding dual has major benefits: we only need to worry about satisfying |E| con-
straints and we have the flexibility to increase yS on any blocking subset S ∈ B we choose. We
initialize A, our set of active blocking sets, to contain the 2k singleton blocking sets consisting of
each required terminal. Let F be an initially empty graph to which we add edges until it becomes a
valid Steiner Forest. We initialize all y values to 0, and at each stage of the algorithm, we raise the y
values of the active blocking sets until at least one edge e becomes tight (

∑
S:e∈∂HS yS = c(e)). At

this point, we add e to F and consolidate e with the blocking set(s) which make it tight.

1: procedure PD-STEINER-FOREST(G, {{s1, t1}, . . . {sk, tk}}, c(e) on edges):
2: A ← {{s1}, {t1}, . . . {sk}, {tk}}
3: F ← ∅
4: . Invariant : every S ∈ A is connected in F .
5: while A 6= ∅ do
6: Raise yS for all S ∈ A until some edge (u, v) becomes tight (assume u ∈ S1)
7: Add (u, v) to F
8: if v ∈ S2 for some S2 then . Replace S1 and S2 with S1 ∪ S2 if it is a valid blocking set
9: Remove S1 and S2 from A

10: if S1 ∪ S2 ∈ B then
11: Add S1 ∪ S2 to A
12: else . Replace S1 with S1 ∪ v if it is a valid blocking set
13: Remove S1 from A
14: if S1 ∪ v ∈ B then
15: Add S1 ∪ v to A
16: . At this stage F connects every terminal; however it may contain cycles.
17: (Reverse Delete:) Consider the edges of F in the reverse order they were added, delet-

ing them if they are unnecessary.
18: return F

Note that two active blocking sets S1 and S2 can simultaneously make an edge e tight: in that case, we
“merge” those sets as S1 ∪ S2, which we keep in A if it is a blocking set. It is possible that adding e
causes a blocking set to no longer be a blocking set, in which case the desired path has been achieved
and we can remove the set altogether from A. Since the goal is to connect every terminal pair, this
loop only terminates once A = ∅. Lastly, we go backwards in order of edges added and remove
unnecessary edges.

• Analysis.

Theorem 1. PD-STEINER-FOREST is a 2-approximation algorithm.

Proof. Suppose there are T loops and label At to be the state of A at step t. Step t uniformly dis-
tributes some ∆t mass onto the y values of all elements of At. Therefore, the value of the dual at the

2

end of the algorithm is ∑
S∈B

yS =
T∑
t=1

∆t · |At| (1)

Now, an edge e is added to F only if the total y incident on e equals c(e). Therefore, we get that

∀e ∈ F : c(e) =
∑

S:e∈∂S
yS =

T∑
t=1

∑
S∈At:e∈∂S

∆t

and hence the total cost of F is

cost(F) =
∑
e∈F

 T∑
t=1

∑
S∈At:e∈∂S

∆t

 =

T∑
t=1

∆t

∑
S∈At

(∑
e∈F :e∈∂S

1

)

=

T∑
t=1

∆t

∑
S∈At

|F ∩ ∂S| (2)

Now, for a fixed S ∈ At, the number |F ∩ ∂S| can be arbitrarily large, and it seems unclear how to
bound the RHS of (2). Note that we would like to compare this with (1). What saves the day is the
reverse delete step, and the fact that F is a forest. We elaborate on this.

Fix some 1 ≤ t ≤ T and consider the graph F [At] induced on the graph F by the disjoint sets At.
More precisely, we have a node for every S ∈ At and a link between Si and Sj iff there is some
(u, v) ∈ F such that u ∈ S1 and v ∈ S2. Figure 1 illustrates what such a graph might look like. The

S1

S2

S3

S5

S4

S6

S7

Figure 1: Example of F [At], the graph induced on F by At. The red edge wouldn’t exist after reverse
delete.

main observation is the following.

Claim 1. F [At] is a forest.

Proof. Suppose not, and suppose F [At] contains a cycle as purported in the picture above. Consider
the last edge e = (u, v) that was added to F with u ∈ Si and v ∈ Sj ; in the picture this is the red

3

edge and i = 5 and j = 6. By the invariant of the algorithm, right before (u, v) was added to F ,
all the Si’s are connected, and in particular, there is a path from u to v in F \ e. In turn, any pair
of vertices, in particular any pair of terminals sa, ta which were connected in F at this point, is also
connected in F \ e. Therefore, in the reverse delete step, this edge e must have been deleted. This is
the contradiction which establishes the claim.

Now we are almost done. Since F [At] must be acyclic, the total number of edges is at most |At| − 1.
Returning to (2), we get

cost(F) ≤
T∑
t=1

∆t

∑
S∈At

|F ∩ ∂S| <
T∑
t=1

2|At|∆t

Comparing with (1), we get that cost(F) < 2dual ≤ 2opt, completing the proof of the theorem.

Notes

The first 2-approximation for Steiner Forest is in the paper [1] by Agrawal, Klein, and Ravi. The exposition
above is from the influential paper [2] by Goemans and Williamson which also gives primal-dual algorithms
for many other “constrained forest” problems. The integrality gap of the LP is also 2, even for the case when
all pairs are terminals (the spanning tree problem), and the above algorithm remains the best approximation
algorithm known for the Steiner forest problem to date. A strengthening of this relaxation is proposed in
the paper [3] by Könemann, Leonardi, Schäfer, and van Zwam; unfortunately, that relaxation also has a gap
arbitrarily close to 2.

4

References

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the generalized
Steiner problem in networks. SIAM J. Comput., 24:440–456, 1995.

[2] M. X. Goemans and D. P. Williamson. A general approximation technique for constrained forest prob-
lems. SIAM Journal on Computing (SICOMP), 24(2):296–317, 1995.

[3] J. Könemann, S. Leonardi, G. Schäfer, and S. H. van Zwam. A group-strategyproof cost sharing mech-
anism for the steiner forest game. SIAM Journal on Computing (SICOMP), 37(5):1319–1341, 2008.

5

